本次英国代写主要为随机金融建模的限时测试

2.考虑一个从0开始以财富wealth0开始的一期投资者。他们必须选择
在时间0上投资数量𝑎∈[0,𝑤0],该数量可提供乘性回报𝑅,即𝑎
变成𝑎𝑅
𝑅=







2,概率𝑝1= 1
2个
;
1,概率𝑝2= 1
4
;
0,概率𝑝3= 1
4

未投资的财富仅保留到时间1不变。投资者的目标是
使用效用函数𝑈(𝑥)= log(𝑥)来最大化时间1的(终端)财富的效用。
(a)从问题描述中确定时间1𝑉1处的值函数。 [1分]
(b)用𝑤0,𝑎和𝑅记下时间1的财富演化方程。推断
该问题的最优方程,将𝑉0(𝑤0)与函数𝑉1关联起来。 [5分]
(c)使用您的最优性方程,否则找到𝑉0(𝑤0),即期望的最大混合
log(𝑊)的值,其中𝑊是时间1的财富。[8分]
现在考虑此终端财富问题的𝑛周期版本。
(d)陈述𝑉𝑛−1(𝑥)的公式并描述𝑉𝑛−𝑖的一般模式
。 [6分]
(e)不用证明,以𝑤0和terms表示𝑉0(𝑤0)的公式。 [2分]
(f)如果𝑝1=𝑝2=𝑝3= 1,则解如何变化
3
?解释你的答案。 [4分]
(g)如果我们固定𝑝2= 1
3
并设置𝑝3= 2
3
−𝑝1描述了在时间− − 1时的最佳投资为
𝑝1在2之间变化
3
和0。说明您的答案。 [4分]

2. Consider a one-period investor who begins at time 0 with wealth 𝑤0. They must choose
at time 0 to invest a quantity 𝑎 ∈ [0,𝑤0] which provides multiplicative returns 𝑅, i.e. 𝑎
becomes 𝑎𝑅, where
𝑅 =







2, with probability 𝑝1 = 1
2
;
1, with probability 𝑝2 = 1
4
;
0, with probability 𝑝3 = 1
4
.
Uninvested wealth is just carried forward to time 1 unchanged. The investor’s objective is
to maximize utility of (terminal) wealth at time 1, using utility function 𝑈(𝑥) = log(𝑥).
(a) Identify the value function at time 1, 𝑉1, from the problem description. [1 mark]
(b) Write down the evolution equation for wealth at time 1 in terms of 𝑤0, 𝑎 and 𝑅. Deduce
the optimality equation for this problem, relating 𝑉0(𝑤0) to the function 𝑉1. [5 marks]
(c) Using your optimality equation, or otherwise, find 𝑉0(𝑤0), i.e. the maximixal expected
value of log(𝑊), where 𝑊 is the wealth at time 1. [8 marks]
Now consider an 𝑛-period version of this terminal wealth problem.
(d) State the formula for 𝑉𝑛−1(𝑥) and describe the general pattern for 𝑉𝑛−𝑖
. [6 marks]
(e) State without proof, the formula for 𝑉0(𝑤0) in terms of 𝑤0 and 𝑛. [2 marks]
(f) How does the solution change if 𝑝1 = 𝑝2 = 𝑝3 = 1
3
? Explain your answer. [4 marks]
(g) If we fix 𝑝2 = 1
3
and set 𝑝3 = 2
3
− 𝑝1 describe the optimal investment at time 𝑛 − 1 as
𝑝1 varies between 2
3
and 0. Explain your answer. [4 marks]


EasyDue™ 支持PayPal, AliPay, WechatPay, Taobao等各种付款方式!

E-mail: easydue@outlook.com  微信:easydue


EasyDue™是一个服务全球中国留学生的专业代写公司
专注提供稳定可靠的北美、澳洲、英国代写服务
专注提供CS、统计、金融、经济、数学等覆盖100+专业的作业代写服务