本次英国代写主要为随机过程的Problem Set

1.令(; F; P)为i.i.d的概率空间。随机变量(Yn)n¸1是
确定。假设E [Yk] = 0和E [Y 2
k] =¾2
令Y0 = 0。
Xn =
ÃX
k = 0
k
!2
·n¾2
;
对于每个n¸0。令(Fn)n¸0是(Yn)n¸0的自然筛选。证明(Xn)n¸0为
mar wrt(Fn)n¸0。
2.令M =(Mn)n¸0为w(Fn)n¸0。令(Gn)n¸0为
(Fn)n¸0,即Gn½Fn; 8n。对于每个n,Dene Xn = E [MnjGn]。证明(Xn)n¸0是一个
ting wrt(Gn)n¸0。
3.令(Xn)n¸0为w(Fn)n¸0。证明对于任何整数k·l·m
差异Xm¡Xl与Xk不相关。那是,
E [(Xm¡Xl)Xk] = 0:
4.令X1; X2; :::是独立的,并且均匀分布,其中Á(µ)= E(expfµX1g)<
1.进一步,令(Fn)n¸0为(Xn)n¸0的自然比率,Sn = S0 + X1 + ::: + Xn。
显示:
i)(Mn)n¸0与
Mn = expngSng
Á(µ)n
是关于(Fn)n¸0的mar。
ii)(Zn)n¸0,其中Zn = expfµSng; µ> 0;是关于(Fn)n¸0的子集市
如果随机变量Xn是标准正态分布的。计算E [Zn]。

1. Let (­;F; P) be a probability space on which the i.i.d. random variables (Yn)n¸1 are
de¯ned. Suppose E[Yk] = 0 and E[Y 2
k ] = ¾2
and let Y0 = 0. Let
Xn =
à n X
k=0
Yk
!2
¡ n¾2
;
for each n ¸ 0. Let (Fn)n¸0 be the natural ¯ltration of (Yn)n¸0. Show that (Xn)n¸0 is
a martingale wrt (Fn)n¸0.
2. Let M = (Mn)n¸0 be a martingale wrt (Fn)n¸0. Let (Gn)n¸0 be a sub¯ltration of
(Fn)n¸0, i.e Gn ½ Fn; 8n. De¯ne Xn = E[MnjGn], for each n. Show that (Xn)n¸0 is a
martingale wrt (Gn)n¸0.
3. Let (Xn)n¸0 be a martingale wrt (Fn)n¸0. Show that for any set of integers k · l · m
the di®erence Xm ¡ Xl is uncorrelated with Xk. That is,
E[(Xm ¡ Xl)Xk] = 0:
4. Let X1;X2; : : : be independent and identically distributed with Á(µ) = E(expfµX1g) <
1. Further, let (Fn)n¸0 be the natural ¯ltration of (Xn)n¸0, and Sn = S0+X1+: : :+Xn.
Show that:
i) (Mn)n¸0 with
Mn = expfµSng
Á(µ)n
is a martingale with respect to (Fn)n¸0.
ii) (Zn)n¸0 with Zn = expfµSng; µ > 0; is a submartingale with respect to (Fn)n¸0
if the random variables Xn are standard-normal distributed. Calculate E[Zn].


EasyDue™ 支持PayPal, AliPay, WechatPay, Taobao等各种付款方式!

E-mail: easydue@outlook.com  微信:easydue


EasyDue™是一个服务全球中国留学生的专业代写公司
专注提供稳定可靠的北美、澳洲、英国代写服务
专注提供CS、统计、金融、经济、数学等覆盖100+专业的作业代写服务