EE 503: Problem Set #10 Due Monday Apr. 12, 2021 (9pm)
一,独立的高斯噪声
令X和N为独立随机变量。假设X在{-1,0,1}上是统一的(在所有3个选项上均相同)。假设N是高斯N0,σ2.DefineY= X + N。
a)找到CDF FY(y)和PDF fY(y)。
b)找到条件CDF FY | X = 1(y)和条件PDF fY | X = 1(y)。 c)查找P [X = 1 | Y≥1]
d)求出P(X + Y)2≤1 /2。
e)找出E [Y]和Var(Y)。
二。计算fX | Y(x | y)
令Y = X2R,其中X,R与X高斯N(0,1)和R指数独立且参数λ> 0 a)Fory>0andx̸= 0,通过使用FY | X = x(y )= P [Y≤y| X = x]。
b)对于y> 0且x̸= 0,通过使用(X,R)→(X,Y)的PDF转换找到fX | Y(x | y)以找到fX,Y(x,y)。
三, fX | Y(x | y)的另一种计算
令Y = RX,其中R,X为i.d.高斯N(0,1)。
a)通过使用FY | X = x(y)= P [Y≤y| X = x]查找fX | Y(x | y)。请记住分别处理x> 0和x <0的情况。 b)通过使用(X,R)→(X,Y)的PDF转换来找到fX | Y(x | y)以找到fX,Y(x,y)。
IV。高斯的线性组合
令X,Y,Z为相互独立的高斯随机变量。假设X具有均值1和方差2,Y具有均值0和方差1,Z具有均值-8和方差1/2。令W = Z -2X + Y / 4。为所有w∈R计算PDF fW(w)。使用Q()函数找到P [W> -9]。
假设X为以下PDF:
五,PDF转换方法
fX(x)= 1,-∞<x <∞π(1 + x2)
令Y = a。使用PDF转换查找Y的PDF。 1 + X2
六。另一个PDF转换问题假设X遵循U [−2,1]分布。令Y = 2X 2 −1。找到Y的PDF。
七。预订问题5.35
对于(c)部分,您的答案应取决于p的值。找出更有可能X = 1的p的值,并且
X = -1的p值更有可能。
八。预订问题5.101
九。预订问题4.92(A)和(B)
I. INDEPENDENT ADDITIVE GAUSSIAN NOISE
Let X and N be independent random variables. Suppose X is uniform over {-1,0,1} (equally likely over all 3 options). SupposeN isGaussianN0,σ2.DefineY =X+N.
a) Find the CDF FY (y) and PDF fY (y).
b) Find the conditional CDF FY |X=1(y) and the conditional PDF fY |X=1(y). c) Find P[X =1|Y ≥1]
d) Find P (X +Y)2 ≤ 1/2.
e) Find E[Y ] and Var(Y ).
II. COMPUTING fX|Y (x|y)
Let Y = X2R where X,R are independent with X Gaussian N(0,1) and R exponential with parameter λ > 0 a)Fory>0andx̸=0,findfX|Y(x|y)byusingFY|X=x(y)=P[Y ≤y|X=x].
b) For y > 0 and x ̸= 0, find fX|Y (x | y) by using the PDF transformation for (X, R) → (X, Y ) to find fX,Y (x, y).
III. ANOTHER COMPUTATION OF fX|Y (x|y)
Let Y = RX where R, X are i.i.d Gaussian N (0, 1).
a)FindfX|Y(x|y)byusingFY|X=x(y)=P[Y ≤y|X=x].Remembertotreatcasesx>0andx<0separately. b) Find fX|Y (x | y) by using the PDF transformation for (X, R) → (X, Y ) to find fX,Y (x, y).
IV. LINEAR COMBINATION OF GAUSSIAN
Let X, Y, Z be mutually independent Gaussian random variables. Assume X has mean 1 and variance 2, Y has mean 0 and variance 1,Z has mean −8 and variance 1/2. Let W = Z −2X +Y/4. Compute the PDF fW(w) for all w ∈ R. Use the Q() function to find P [W > −9].
Suppose that X as the following PDF:
V. PDF TRANSFORMATION METHOD
fX (x) = 1 , −∞ < x < ∞ π(1+x2)
Let Y = a . Find the PDF of Y using PDF transformation. 1+X2
VI. ANOTHER PDF TRANSFORMATION PROBLEM Suppose that X follows a U [−2, 1] distribution. Let Y = 2X 2 − 1. Find the PDF of Y .
VII. BOOK PROBLEM 5.35
For part (c), your answer should depend on the value of p. Find out the values of p for which X = 1 is more likely and
the values of p for which X = −1 is more likely.
VIII. BOOK PROBLEM 5.101
IX. BOOK PROBLEM 4.92 (A) AND (B)