本次英国代写主要为真实分析相关的限时测试

2. 有界函数:例子
下列哪项为真?
f(x) =
p1 + x2 在 (0; 1) 上是无界的
f(x) =
p1 + x2 在 (1;1) X 上是无界的
g(x) =
p1 + (1=x2) 有界于 (0; 1)
g(x) =
p1 + (1=x2) 在 (1;1) 上是无界的
h(x) = x
p1 + (1=x2) 有界于 (1;1)
其他都没有
3. 连续性:定义
函数 f 被称为在点 x 2 R 处连续,如果 。 . .
8a > 0 9b > 0 使得如果 jx x j < b,则 jf(x) f(x)j < a
X
8a > 0 9b > 0 使得如果 jx x j < a,则 jf(x) f(x)j < b
9a > 0 8b > 0 使得如果 jx xj < a,则 jf(x ) f(x)j < b
9a > 0 8b > 0 使得如果 jx xj < b,则 jf(x ) f(x)j < a
8a > 0 9b > 0 使得如果 jf(x) f(x)j < a,则 jx x j < b
其他都没有
4. 连续性和代数运算:理论
设 f 和 g 是 R 上的函数。假设 f 在零处连续
并且 g 在零处具有跳跃不连续性。设 h1 = f + g, h2 = fg 和
h3 = f g。哪些函数必须在零处具有不连续性?
h1 仅 X
仅 h2
仅 h3
仅 h1 和 h2

h1、h2 和 h3
其他都没有
5. 一致连续性:理论
设 f 是区间 ( 2; 2 ) 上的连续函数。考虑
以下陈述:
(i) f 在 ( 2; 2) 上一致连续
(ii) f 在 ( 1; 1) 上一致连续
(iii) f 有界于 ( 2; 2)
(iv) f 有界于 ( 1; 1)
哪些陈述对 f 一定是真的?
(i) 仅
(ii) 仅
(iii) 仅
(i) 和 (ii) 仅
(ii) 和 (iv) 只有 X
其他都没有

2. Bounded functions: examples
Which of the following statements is true?
 f(x) =
p1 + x2 is unbounded on (0; 1)
 f(x) =
p1 + x2 is unbounded on (1;1) X
 g(x) =
p1 + (1=x2) is bounded on (0; 1)
 g(x) =
p1 + (1=x2) is unbounded on (1;1)
 h(x) = x
p1 + (1=x2) is bounded on (1;1)
 None of the others
3. Continuity: de nitions
A function f is called continuous at the point x 2 R, if . . .
 8a > 0 9b > 0 such that if jx xj < b, then jf(x) f(x)j < a
X
 8a > 0 9b > 0 such that if jx xj < a, then jf(x) f(x)j < b
 9a > 0 8b > 0 such that if jx xj < a, then jf(x) f(x)j < b
 9a > 0 8b > 0 such that if jx xj < b, then jf(x) f(x)j < a
 8a > 0 9b > 0 such that if jf(x) f(x)j < a, then jx xj < b
 None of the others
4. Continuity and algebraic operations: theory
Let f and g be functions on R. Suppose that f is continuous at zero
and g has a jump discontinuity at zero. Let h1 = f + g, h2 = fg and
h3 = f  g. Which functions must have a discontinuity at zero?
 h1 only X
 h2 only
 h3 only
 h1 and h2 only

 h1, h2 and h3
 None of the others
5. Uniform continuity: theory
Let f be a continuous function on the interval ( 2; 2). Consider the
following statements:
(i) f is uniformly continuous on ( 2; 2)
(ii) f is uniformly continuous on ( 1; 1)
(iii) f is bounded on ( 2; 2)
(iv) f is bounded on ( 1; 1)
Which statements must be true for f?
 (i) only
 (ii) only
 (iii) only
 (i) and (ii) only
 (ii) and (iv) only X
 None of the others


EasyDue™ 支持PayPal, AliPay, WechatPay, Taobao等各种付款方式!

E-mail: easydue@outlook.com  微信:easydue


EasyDue™是一个服务全球中国留学生的专业代写公司
专注提供稳定可靠的北美、澳洲、英国代写服务
专注提供CS、统计、金融、经济、数学等覆盖100+专业的作业代写服务