这个作业是在多期间投资环境中,完成夏普比率和对风险资产的最佳配置
B9339 Homework Assignment #4
1.(夏普比率与最优资本配置之间的关系)在动量崩溃中,丹尼尔和
Moskowitz的“动态”策略基于他们为Sharpe比率和
对风险资产的最佳配置。他们的推论是基于Markowitz的
均方差框架。在此问题中,您要重新分配之间的相同关系
在多期间投资环境中,夏普比率和对风险资产的最佳配置。
考虑具有已知收益分配的风险投资:在任何一个投资期间,收益
已知μ的平均值和波动率σ;并且连续期间的收益与每个收益无关
其他。您可以对该风险资产进行投资,也可以将现金连续keep
投资期,其中𝑇是固定的且已知。在您𝑇连续的一开始
投资,您可以决定分配给您的资本的比例(分配)𝑤。
风险投资;您只能选择一次此分配(在开始进行投资之前),然后
请勿在后续投资之间进行更改(您应在每次投资中应用相同的分配
投资期)。您想选择分配𝑤,以便在
您的𝑇后续投资。
将资本的增长率𝑔(𝑤)定义为初始资本和
您的最终资本:
最终资本=初始资本∗𝑒
𝑔(𝑤)∗𝑇
增长率𝑔(𝑤)取决于您对风险投资的分配𝑤(较大/较小的𝑤
是,您对风险投资的赌注越大/越小)。在您𝑇之后最大化您的资本
在连续的周期中,您需要选择𝑤,以便最大化𝑔(𝑤)。
(a)假设现金一文不值(其收益为0),则以(a)的期望来近似𝑔(𝑤)
(适当选择的)随机变量。
(b)在Daniel和Moskowitz的推导中使用近似值来推导
用μ和σ(和μ)近似𝑔(𝑤)。
[提示:您可能想对𝑥= 0周围的ln(1 +𝑥)使用二阶泰勒展开式。]
(c)用(b)的𝑔(𝑤)近似值得出最佳分配an
∗
最大化
𝑔(𝑤)。
[提示:您的最佳分配应与Daniel和Moskowitz获得的分配一致。]
(d)使用最优分配𝑤
∗
从(c)得出最佳增长率的表达式,
𝑔
∗ =𝑔(𝑤
∗
),您的资金。您可以将此表达式识别为熟悉的指标吗?
(e)重复步骤(a)-(d),并假设现金在每个投资期间的利率为𝑟。
(f)在推导中,您在哪里使用了收益的独立性(连续期间)?
现在考虑相同的设置,但假设您拥有的不是单个风险投资,而是
您处置了一些具有已知回报分配的风险资产。现在,您可以决定
capital将您的资金分配给所有(全部)风险投资,以及您的资金分配
有风险的投资组合(您将多少风险资本分配给了每个有风险的
投资)。和以前一样,您一次选择这些分配(开始投资之前),然后执行
不要在连续的投资期间之间更改它们。
(g)使用您从上述(d)(或(e))得出的结果来论证您的分配决策减少到
最大化风险投资组合的夏普比率。
[注意:对于这一部分,您的论点不取决于现金收益率。
除了建立与最优分配导数的另一个连接之外,这个问题
Momentum Crashes(动量崩溃)为您提供了一个投资多种股票的框架(已知
预期收益和波动率)。
2.(波动性:不仅不好)在这个问题上,你要弄清楚波动性既有害又有害
和有益的。
考虑在任何一个投资期内具有以下收益分配的风险投资
在任何一个时期内返回=
获得,概率为1/2;
损失,概率为1/2;
并且从一个投资期到下一个投资期的结果是独立的。
当投资具有收益=𝑎和损失= −𝑎(0 <𝑎<1)的对称收益分布时:
(a)得出每个投资期间的预期投资收益(以𝑎为单位)。给
quantity的此数量的值= 10%,30%,50%。这是有利的(不利的,中立的)
任何一个时期的投资?预期收益如何取决于𝑎?
(b)推导每个投资期的投资波动率(以terms为单位)。赋予价值
for = 10%,30%,50%。波动率如何取决于𝑎?
(c)在您将全部资本投资于有风险的人之后,得出您的财富的中值
连续两个投资期?给出𝑎= 10%,30%,50%的数量值。
如果您反复投资这项投资,您是否期望长期增长?
(d)使用以上问题1中(b)的答案得出
(f) Derive the expected return of the investment for each investment period (in terms of 𝑎). How
does the expected return depend on 𝑎? Is this a favorable (unfavorable, neutral) investment for
any one period, when 𝑎 = 100%?
(g) Derive the volatility of the investment for each investment period (in terms of 𝑎). How does
volatility depend on 𝑎? What is the volatility of this risky investment when 𝑎 = 100%?
(h) Derive the median value of your wealth after you have invested all your capital in the risky
investment for two successive periods. Do you expect long-term growth if you repeatedly invest
in this risky investment when 𝑎 = 100%?
Consider now a change to your investment process. Before each investment period, you split your
capital into two halves and you invest one half in the risky investment and the other half in cash, which
earns nothing (its return is 0).
(i) Derive the median value of your wealth after you have followed this investment process for two
successive periods. Do you expect long-term growth if you repeatedly follow this process when
𝑎 = 100%?
Replace now the cash investment in your process with a second risky investment, which is
independent of the first and has an identical return distribution. Before each investment period, you
split your capital into two halves and you invest each half in one of the two risky investments.
(j) Derive the median value of your wealth after you have followed this investment process for four
successive periods. Explain why we are using four successive, instead of two, to evaluate this
process. Do you expect long-term growth if you repeatedly follow this investment process when
𝑎 = 100%?
(k) Compare your answers in (j), (i) and (h). Which investment process is more attractive long-term?
(l) Explain how your comparison in (k) suggests that volatility can be beneficial.
3. (The 72 Rule) In this problem, you are to derive a rule of thumb that practitioners have been using for
decades.
(a) Using the Taylor expansion from the hint in Problem 1 (b) above and the value of ln(2) =
0.69, show that an investment which grows at an interest rate 𝑟 = 10% (per period) requires
𝑛 ≈ 72/(100 ∗ 𝑟) periods (e.g. years) in order to double in value.
(b) Create an Excel spreadsheet to assess the sensitivity of this approximate formula to the value
of the interest rate 𝑟. For what value of the interest rate is the “72 Rule” formula closest to
the ‘true’ 𝑛?