这个作业是根据现有的金融数据分析股市的收盘价

ECMT 670 Econometric Analysis of Financial Data –
Problem Set 3

1.假设您有一个时间序列{Xt}
Ť
当t = 100时t = 1。然后获得ACF
和PACF如下。
j = 1 j = 2 j = 3 j = 4 j = 5
ρˆj 0.78 0.0.61 0.52 0.35 0.10
πˆj 0.37 0.21 0.16 0.06 0.01
(a)如果您想通过MA(q)模型拟合数据,您会选择哪个q?
说明。
(b)如果您想通过AR(p)模型拟合数据,您会选择什么p?
说明。
2.(可选)从eCampus下载数据集MerckDaily.csv并使用每日
收盘价解决了这个问题。
(a)绘制时间序列的ACVF和ACF。
(b)使用AIC将0≤p,q≤4模型的ARMA(p,q)拟合到数据
标准。 您会选择哪对(p,q)?
(c)使用BIC标准重复(b)部分。 将您的选择与零件进行比较
(b)。 您会从AIC和BIC选择的两个对中选择哪个?
3. Let {Xt} be a stationary time series in R.
(a) For µ = E[Xt
], γj = Cov(Xt
, Xt−j ) and ρj = γj/γ0, exploit Proposition 3.1.1
in the lecture notes to verify the following:
Π(Xt+1|1, Xt) = (1 − ρ1)µ + ρ1Xt
. (1)
(b) If Xt = µ + t + θt−1 for some white noise {t}, simplify (1) in terms of
primitive parameters of this model.
(c) Continue with part (b) and suppose Xt = x for some known number x. Propose an estimator for Π(Xt+1|1, Xt) and derive its asymptotic distribution.
4. Consider an investor whose utility function is: for some γ 6= 1,
u(ct) = (ct − st)
1−γ − 1
1 − γ
, (2)
where ct
is the consumption at time t, and st
is the habit consumption level at
time t. Let xt be the payoff of an asset at time t.
1
(a) Compute the stochastic discount factor mt+1, and write down the pricing
equation.
(b) Explain how you would estimate the parameter γ.
2


EasyDue™ 支持PayPal, AliPay, WechatPay, Taobao等各种付款方式!

E-mail: easydue@outlook.com  微信:easydue


EasyDue™是一个服务全球中国留学生的专业代写公司
专注提供稳定可靠的北美、澳洲、英国代写服务
专注提供CS、统计、金融、经济、数据科学专业的作业代写服务