本次英国代写主要为金融数学相关的assignment

1. 考虑一系列具有密度的随机变量 Xn

(a) 确定 Xn 极限的候选者并分析收敛性
在概率上。 (10 分)
(b) 分析 Xn 在 L1,L2 中的收敛性。 (20 分)

(a) 证明这是一个过滤。 (10 分)
(b) 为 X(!)=1 $ ! 求 E(X|Ft)。 (10 分)
(c) 找出所有 ! 的极限 limt!1 E(X|Ft)(!)。 我们有转换吗?
L1,L2,概率? (15 分)
(d) 众所周知,如果 E(X) < 1,则 Y (t)= E(X|Ft)isa
鞅。 通过计算 s<t 找到 E(Y (t)|Fs) 的形式
条件期望,看它确实等于Y(s)。 (30
分数)
(e) 假设 M(t) 是 t 2 [0,T] 的任意鞅
到一些过滤 Gt。 证明存在随机变量 X
使得 M(t)= E(X|Gt)。 (5 分)

1. Consider a sequence of random variables Xn with densities

(a) Identify the candidate for the limit of Xn and analyse the convergence
in probability. (10 marks)
(b) Analyse the convergence of Xn in L1,L2. (20 marks)

(a) Show that this is a filtration. (10 marks)
(b) Find E(X|Ft) for X(!)=1 $ !. (10 marks)
(c) Find the limit limt!1 E(X|Ft)(!) for all !. Do we have the conver-
gence in L1, in L2, in probability? (15 marks)
(d) It is a well-known fact that if E(X) < 1, then Y (t)= E(X|Ft)isa
martingale. Find the form of E(Y (t)|Fs) for s<t by computing the
conditional expectation, to see that it is indeed equal to Y (s). (30
marks)
(e) Suppose M(t) is an arbitrary martingale for t 2 [0,T]withrespect
to some filtration Gt. Show that there exists a random variable X
such that M(t)= E(X|Gt). (5 marks)


EasyDue™ 支持PayPal, AliPay, WechatPay, Taobao等各种付款方式!

E-mail: easydue@outlook.com  微信:easydue


EasyDue™是一个服务全球中国留学生的专业代写公司
专注提供稳定可靠的北美、澳洲、英国代写服务
专注提供CS、统计、金融、经济、数学等覆盖100+专业的作业代写服务