本次英国代写为真实分析的限时测试

5CCM221a Analysis I BSc and MSci Examination

A节
1.(15分)令(an)n2N为R和2 R中的序列。
(i)(5分)De ne收敛的概念,lim n!1an = a。
解决方案:(在演讲中介绍)我们说(an)n2N收敛到a并写
limn!1 an = a当且仅当
8“ 2 R> 0 9N 2 N 8n 2 N N:jan aj <”:
(ii)(5分)使用收敛的定义,证明lim n!1
1个
nn = 0。
解决方案:(类似于讲座和练习)
令“ 2 R> 0。根据阿基米德原理,存在N 2 N,使得
N> 1
。因此,
8n 2 N N:

1个
nn 0

= 1
nn 1
ñ
1个
N <“
显示断言。
(iii)(5分)计算lim n!1
arctan(n)n2
cos(n)
n2 + 4罪(n)

解决方案:(类似于讲课和练习中的示例)首先,我们观察到
服务
lim n!1
arctan(n)n2
cos(n)
n2 + 4罪(n)
= lim n!1
arctan(n)cos(n)
22
1 + 4s(n)
22

由于jsinj和jcosj的边界为1,我们得到sin(n)
n2! 0和cos(n)
n2! 0,
即使用代数规则来限制
lim n!1
arctan(n)n2
cos(n)
n2 + 4罪(n)
= lim n!1
arctan(n)cos(n)
22
1 + 4s(n)
22
= limn!1 arctan(n)
1个
=
2个

2.(20分)令(an)n2N为R和2 R中的序列。
(i)(5分)
1 X
n = 1

1 X
n = 1
an = a。
解:(在演讲中介绍)对于k 2 N,令sk:= Pk
n = 1个然后我们

P1
当且仅当(sk)k2N收敛时,n = 1收敛。在那里面
案例,我们写
P1
n = 1 an = a当且仅当sk! a(k!1)。
(ii)(5分)表明
1 X
n = 1
1个
n(n + 1)
是收敛的并计算其极限。
解决方案:(类似于练习)自1
n(n + 1)
= n + 1 n
n(n + 1)
= 1
11
n + 1
观察到部分和sk满足
sk =
X
n = 1
1个
ñ
1个
n + 1
= 1 1
k + 1
! 1(k!1):
因此,该级数收敛,
P1
n = 1
1个
n(n + 1)
= 1。
(iii)(10分)求所有x 2 R使得
1 X
n = 1
n
ñ
收敛。
解决方案:(类似于讲座和练习中的示例)使用根
测试
lim n!1
ñ
x
ñ
= lim n!1
X
ñPN
= x
我们得到
P1
n = 1
n
n对所有x 2 B(0; 1)收敛,对
jxj> 1。
对于x = 1,级数变为
P1
n = 1
(1)n
n是交替的,并且
1个
n&0,该级数收敛。
对于x = 1,该序列因积分比较而发散,因为
P1
n = 1
1个
n <1
当且仅当limR!1
R
1个
dx
x <1但
R
1个
dx
X
= lnR! 1:
因此,
P1
n = 1
n
当且仅当x 2 [1; n 1)。

Section A
1. (15 points) Let (an)n2N be a sequence in R and a 2 R.
(i) (5 points) De ne the notion of convergence and lim n!1an = a.
Solution: (covered in lecture) We say (an)n2N converges to a and write
limn!1 an = a if and only if
8″ 2 R>0 9N 2 N 8n 2 NN : jan aj < “:
(ii) (5 points) Using the de nition of convergence, show that lim n!1
1
nn = 0.
Solution: (similar to lecture and exercises)
Let ” 2 R>0. By the Archimedean Principle, there exists N 2 N such that
N > ” 1
. Hence,
8n 2 NN :

1
nn 0

= 1
nn  1
n
 1
N < ”
shows the assertion.
(iii) (5 points) Compute lim n!1
arctan(n)n2
cos(n)
n2 + 4 sin(n)
.
Solution: (similar to examples in lecture and exercises) First, we ob-
serve
lim n!1
arctan(n)n2
cos(n)
n2 + 4 sin(n)
= lim n!1
arctan(n) cos(n)
n2
1 + 4sin(n)
n2
:
Since jsinj and jcosj are bounded by 1, we obtain sin(n)
n2 ! 0 and cos(n)
n2 ! 0,
i.e., using the algebraic rules for limits
lim n!1
arctan(n)n2
cos(n)
n2 + 4 sin(n)
= lim n!1
arctan(n) cos(n)
n2
1 + 4sin(n)
n2
=limn!1 arctan(n)
1
= 
2
:

2. (20 points) Let (an)n2N be a sequence in R and a 2 R.
(i) (5 points) De ne the notion of convergence of
1 X
n=1
an and
1 X
n=1
an = a.
Solution: (covered in lecture) For k 2 N, let sk := Pk
n=1 an. Then, we
say
P1
n=1 an is convergent if and only if (sk)k2N is convergent. In that
case, we write
P1
n=1 an = a if and only if sk ! a (k ! 1).
(ii) (5 points) Show that
1 X
n=1
1
n(n + 1)
is convergent and compute its limit.
Solution: (similar to exercises) Since 1
n(n+1)
= n+1 n
n(n+1)
= 1
n 1
n+1 , we
observe that the partial sums sk satisfy
sk =
k X
n=1
1
n
1
n + 1
= 1 1
k + 1
! 1 (k ! 1):
Hence, the series converges and
P1
n=1
1
n(n+1)
= 1.
(iii) (10 points) Find all x 2 R such that
1 X
n=1
xn
n
converges.
Solution: (similar to examples in lecture and exercises) Using the root
test
lim n!1
n
rxn
n
= lim n!1
x
n pn
= x
we obtain that
P1
n=1
xn
n converges for all x 2 B(0; 1) and diverges for
jxj > 1.
For x = 1, the series becomes
P1
n=1
( 1)n
n which is alternating and, since
1
n & 0, the series converges.
For x = 1, the series diverges by integral comparison since
P1
n=1
1
n < 1
if and only if limR!1
R R
1
dx
x < 1 but
Z R
1
dx
x
= lnR ! 1:
Thus,
P1
n=1
xn
n converges if and only if x 2 [ 1; 1).